Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.332
Filtrar
1.
Elife ; 132024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38742856

RESUMO

The type II class of RAF inhibitors currently in clinical trials paradoxically activate BRAF at subsaturating concentrations. Activation is mediated by induction of BRAF dimers, but why activation rather than inhibition occurs remains unclear. Using biophysical methods tracking BRAF dimerization and conformation, we built an allosteric model of inhibitor-induced dimerization that resolves the allosteric contributions of inhibitor binding to the two active sites of the dimer, revealing key differences between type I and type II RAF inhibitors. For type II inhibitors the allosteric coupling between inhibitor binding and BRAF dimerization is distributed asymmetrically across the two dimer binding sites, with binding to the first site dominating the allostery. This asymmetry results in efficient and selective induction of dimers with one inhibited and one catalytically active subunit. Our allosteric models quantitatively account for paradoxical activation data measured for 11 RAF inhibitors. Unlike type II inhibitors, type I inhibitors lack allosteric asymmetry and do not activate BRAF homodimers. Finally, NMR data reveal that BRAF homodimers are dynamically asymmetric with only one of the subunits locked in the active αC-in state. This provides a structural mechanism for how binding of only a single αC-in inhibitor molecule can induce potent BRAF dimerization and activation.


Assuntos
Inibidores de Proteínas Quinases , Multimerização Proteica , Proteínas Proto-Oncogênicas B-raf , Proteínas Proto-Oncogênicas B-raf/metabolismo , Proteínas Proto-Oncogênicas B-raf/antagonistas & inibidores , Proteínas Proto-Oncogênicas B-raf/química , Regulação Alostérica/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Multimerização Proteica/efeitos dos fármacos , Humanos , Conformação Proteica , Ligação Proteica , Modelos Moleculares
2.
Chem Biol Drug Des ; 103(5): e14534, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38697951

RESUMO

Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor 2 (VEGFR2) are known as valid targets for cancer therapy. Overexpression of EGFR induces uncontrolled cell proliferation and VEGF expression triggering angiogenesis via VEGFR2 signaling. On the other hand, VEGF expression independent of EGFR signaling is already known as one of the mechanisms of resistance to anti-EGFR therapy. Therefore, drugs that act as dual inhibitors of EGFR and VEGFR2 can be a solution to the problem of drug resistance and increase the effectiveness of therapy. In this review, we summarize the relationship between EGFR and VEGFR2 signal transduction in promoting cancer growth and how their kinase domain structures can affect the selectivity of an inhibitor as the basis for designing dual inhibitors. In addition, several recent studies on the development of dual EGFR and VEGFR2 inhibitors involving docking simulations were highlighted in this paper to provide some references such as pharmacophore features of inhibitors and key residues for further research, especially in computer-aided drug design.


Assuntos
Antineoplásicos , Receptores ErbB , Neoplasias , Inibidores de Proteínas Quinases , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Receptores ErbB/antagonistas & inibidores , Receptores ErbB/metabolismo , Receptores ErbB/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/antagonistas & inibidores , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/uso terapêutico , Antineoplásicos/química , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Simulação de Acoplamento Molecular , Desenho de Fármacos
3.
Int J Mol Sci ; 25(9)2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38731883

RESUMO

The serine-threonine kinase protein kinase A (PKA) is a cyclic AMP (cAMP)-dependent intracellular protein with multiple roles in cellular biology including metabolic and transcription regulation functions. The cAMP-dependent protein kinase inhibitor ß (PKIB) is one of three known endogenous protein kinase inhibitors of PKA. The role of PKIB is not yet fully understood. Hormonal signaling is correlated with increased PKIB expression through genetic regulation, and increasing PKIB expression is associated with decreased cancer patient prognosis. Additionally, PKIB impacts cancer cell behavior through two mechanisms; the first is the nuclear modulation of transcriptional activation and the second is the regulation of oncogenic AKT signaling. The limited research into PKIB indicates the oncogenic potential of PKIB in various cancers. However, some studies suggest a role of PKIB in non-cancerous disease states. This review aims to summarize the current literature and background of PKIB regarding cancer and related issues. In particular, we will focus on cancer development and therapeutic possibilities, which are of paramount interest in PKIB oncology research.


Assuntos
Neoplasias , Animais , Humanos , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacologia , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Terapia de Alvo Molecular/métodos , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Neoplasias/genética , Inibidores de Proteínas Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo
4.
Int J Mol Sci ; 25(6)2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38542325

RESUMO

The cancer stem cell (CSC) hypothesis postulates that heterogeneous human cancers harbor a population of stem-like cells which are resistant to cytotoxic therapies, thus providing a reservoir of relapse following conventional therapies like chemotherapy and radiation (RT). CSCs have been observed in multiple human cancers, and their presence has been correlated with worse clinical outcomes. Here, we sought to evaluate the impact of drug dosing of the multi-tyrosine kinase inhibitor, sorafenib, on CSC and non-CSCs in soft tissue sarcoma (STS) models, hypothesizing differential effects of sorafenib based on dose and target cell population. In vitro, human cancer cell lines and primary STS from surgical specimens were exposed to escalating doses of sorafenib to determine cell viability and expression of CSC marker aldehyde dehydrogenase (ALDH). In vivo, ALDHbright CSCs were isolated, exposed to sorafenib, and xenograft growth and survival analyses were performed. We observed that sarcoma CSCs appear to paradoxically respond to the tyrosine kinase inhibitor sorafenib at low doses with increased proliferation and stem-like function of CSCs, whereas anti-viability effects dominated at higher doses. Importantly, STS patients receiving neoadjuvant sorafenib and RT on a clinical trial (NCT00864032) showed increased CSCs post therapy, and higher ALDH scores post therapy were associated with worse metastasis-free survival. These data suggest that low-dose sorafenib may promote the CSC phenotype in STS with clinically significant effects, including increased tumor growth and higher rates of metastasis formation in sarcoma patients.


Assuntos
Sarcoma , Humanos , Sorafenibe/farmacologia , Sorafenibe/uso terapêutico , Sorafenibe/metabolismo , Aldeído Desidrogenase/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Sarcoma/patologia , Células-Tronco Neoplásicas/metabolismo , Linhagem Celular Tumoral
5.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068992

RESUMO

Chronic myeloid leukemia (CML) is a clonal myeloproliferative disease characterized by the presence of the BCR-ABL fusion gene, which results from the Philadelphia chromosome. Since the introduction of tyrosine kinase inhibitors (TKI) such as imatinib mesylate (IM), the clinical outcomes for patients with CML have improved significantly. However, IM resistance remains the major clinical challenge for many patients, underlining the need to develop new drugs for the treatment of CML. The basis of CML cell resistance to this drug is unclear, but the appearance of additional genetic alterations in leukemic stem cells (LSCs) is the most common cause of patient relapse. However, several groups have identified a rare subpopulation of CD34+ stem cells in adult patients that is present mainly in the bone marrow and is more immature and pluripotent; these cells are also known as very small embryonic-like stem cells (VSELs). The uncontrolled proliferation and a compromised differentiation possibly initiate their transformation to leukemic VSELs (LVSELs). Their nature and possible involvement in carcinogenesis suggest that they cannot be completely eradicated with IM treatment. In this study, we demonstrated that cells from CML patients with the VSELs phenotype (LVSELs) similarly harbor the fusion protein BCR-ABL and are less sensitive to apoptosis than leukemic HSCs after IM treatment. Thus, IM induces apoptosis and reduces the proliferation and mRNA expression of Ki67 more efficiently in LHSCs than in leukemic LVSELs. Finally, we found that the expression levels of some miRNAs are affected in LVSELs. In addition to the tumor suppressor miR-451, both miR-126 and miR-21, known to be responsible for LSC leukemia-initiating capacity, quiescence, and growth, appear to be involved in IM insensitivity of LVSELs CML cell population. Targeting IM-resistant CML leukemic stem cells by acting via the miRNA pathways may represent a promising therapeutic option.


Assuntos
Leucemia Mielogênica Crônica BCR-ABL Positiva , MicroRNAs , Adulto , Humanos , Mesilato de Imatinib/farmacologia , Mesilato de Imatinib/uso terapêutico , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , MicroRNAs/metabolismo , Apoptose , Células-Tronco/metabolismo , Células-Tronco Neoplásicas/metabolismo
6.
ChemistryOpen ; 12(10): e202300066, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37803417

RESUMO

A computer-assisted drug design (CADD) approach was utilized to design a new acetamido-N-(para-fluorophenyl)benzamide) derivative of the naturally occurring alkaloid, theobromine, (T-1-APFPB), following the pharmacophoric features of VEGFR-2 inhibitors. The stability and reactivity of T-1-AFPB were assessed through density functional theory (DFT) calculations. Molecular docking assessments showed T-1-AFPB's potential to bind with and inhibit VEGFR-2. The precise binding of T-1-AFPB against VEGFR-2 with optimal energy was further confirmed through several molecular dynamics (MD) simulations, PLIP, MM-GBSA, and PCA studies. Then, T-1-AFPB (4-(2-(3,7-Dimethyl-2,6-dioxo-2,3,6,7-tetrahydro-1H-purin-1-yl)acetamido)-N-(4-fluorophenyl)benzamide) was semi-synthesized and the in vitro assays showed its potential to inhibit VEGFR-2 with an IC50 value of 69 nM (sorafenib's IC50 was 56 nM) and to inhibit the growth of HepG2 and MCF-7 cancer cell lines with IC50 values of 2.24±0.02 and 3.26±0.02 µM, respectively. Moreover, T-1-AFPB displayed very high selectivity indices against normal Vero cell lines. Furthermore, T-1-AFPB induced early (from 0.72 to 19.12) and late (from 0.13 to 6.37) apoptosis in HepG2 cell lines. In conclusion, the combined computational and experimental approaches demonstrated the efficacy and safety of T-1-APFPB providing it as a promising lead VEGFR-2 inhibitor for further development aiming at cancer therapy.


Assuntos
Teobromina , Receptor 2 de Fatores de Crescimento do Endotélio Vascular , Humanos , Estrutura Molecular , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/química , Receptor 2 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/metabolismo , Células MCF-7 , Benzamidas
7.
Chem Res Toxicol ; 36(8): 1427-1438, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37531179

RESUMO

Pexidartinib (PEX, TURALIO), a selective and potent inhibitor of the macrophage colony-stimulating factor-1 receptor, has been approved for the treatment of tenosynovial giant cell tumor. However, frequent and severe adverse effects have been reported in the clinic, resulting in a boxed warning on PEX for its risk of liver injury. The mechanisms underlying PEX-related hepatotoxicity, particularly metabolism-related toxicity, remain unknown. In the current study, the metabolic activation of PEX was investigated in human/mouse liver microsomes (HLM/MLM) and primary human hepatocytes (PHH) using glutathione (GSH) and methoxyamine (NH2OMe) as trapping reagents. A total of 11 PEX-GSH and 7 PEX-NH2OMe adducts were identified in HLM/MLM using an LC-MS-based metabolomics approach. Additionally, 4 PEX-GSH adducts were detected in the PHH. CYP3A4 and CYP3A5 were identified as the primary enzymes responsible for the formation of these adducts using recombinant human P450s and CYP3A chemical inhibitor ketoconazole. Overall, our studies suggested that PEX metabolism can produce reactive metabolites mediated by CYP3A, and the association of the reactive metabolites with PEX hepatotoxicity needs to be further studied.


Assuntos
Doença Hepática Induzida por Substâncias e Drogas , Citocromo P-450 CYP3A , Camundongos , Humanos , Animais , Citocromo P-450 CYP3A/metabolismo , Cromatografia Líquida , Espectrometria de Massas em Tandem , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Inibidores do Citocromo P-450 CYP3A/farmacologia , Microssomos Hepáticos/metabolismo , Metabolômica , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Glutationa/metabolismo
8.
Eur J Med Chem ; 258: 115543, 2023 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-37329712

RESUMO

PI3K-Akt-mTOR pathway is a highly activated signal transduction pathway in human hematological malignancies and has been validated as a promising target for acute myeloid leukemia (AML) therapy. Herein, we designed and synthesized a series of 7-azaindazole derivatives as potent PI3K/mTOR dual inhibitors based on our previously reported FD223. Among them, compound FD274 showed excellent dual PI3K/mTOR inhibitory activity, with IC50 values against PI3Kα/ß/γ/δ and mTOR of 0.65 nM, 1.57 nM, 0.65 nM, 0.42 nM, and 2.03 nM, respectively, superior to compound FD223. Compared to the positive drug Dactolisib, FD274 exhibited significant anti-proliferation of AML cell lines (HL-60 and MOLM-16 with IC50 values of 0.092 µM and 0.084 µM, respectively) in vitro. Furthermore, FD274 demonstrated dose-dependent inhibition of tumor growth in the HL-60 xenograft model in vivo, with 91% inhibition of tumor growth at an intraperitoneal injection dose of 10 mg/kg and no observable toxicity. All of these results suggest that FD274 has potential for further development as a promising PI3K/mTOR targeted anti-AML drug candidate.


Assuntos
Antineoplásicos , Leucemia Mieloide Aguda , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Serina-Treonina Quinases TOR/metabolismo , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/uso terapêutico , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/patologia , Linhagem Celular Tumoral , Proliferação de Células , Inibidores de Proteínas Quinases/metabolismo
9.
Bioorg Med Chem ; 90: 117367, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348260

RESUMO

Despite considerable recent progress in therapeutic strategies, cancer still remains one of the leading causes of death. Molecularly targeted therapies, in particular those focused on blocking receptor tyrosine kinases have produced promising outcomes in recent years. In this study, a new series of spiro[indoline-3,2'-quinazoline]-2,4'(3'H)-dione derivatives (5a-5l) were synthesized and evaluated as potential kinase inhibitors with anticancereffects. The anti-proliferative activity was measured by MTT assay, while the cell cycle was studied using flow cytometry. Moreover, kinase inhibition profiles of the most promising compounds were assessed against a panel of 25 oncogenic kinases. Compounds 5f,5g,5i, and 5jshowed anti-proliferative effect against EBC-1, A549, and HT-29 solid tumor models in addition to leukemia cell line K562. In particular, compound 5f, bearing 4-methylphenyl pendant on the isatin ring displayed considerable potency with IC50 values of 2.4 to 13.4 µM against cancer cells. The most potent derivatives also altered the distribution of cells in different phases of cell cycle and increased the sub-G1 phase cells in K562 cells. Moreover, kinase inhibition assays identified FLT3 kinase was as the primary targetof these derivatives. Compound 5f at 25 µM concentration showed inhibitory activities of 55% and 62% against wild-type FLT3 and its mutant, D835Y, respectively. Finally, the docking and simulation studies revealed the important interactions of compound 5f with wild type and mutant FLT3. The results of this study showed that some novel spiroindoline quinazolinedione compounds could be potential candidates for further development as novel targeted anticancer agents.


Assuntos
Antineoplásicos , Leucemia , Humanos , Linhagem Celular Tumoral , Quinazolinonas/farmacologia , Antineoplásicos/farmacologia , Antineoplásicos/metabolismo , Ciclo Celular , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Proliferação de Células , Apoptose , Ensaios de Seleção de Medicamentos Antitumorais , Relação Estrutura-Atividade , Simulação de Acoplamento Molecular , Tirosina Quinase 3 Semelhante a fms/metabolismo
10.
Cells ; 12(9)2023 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-37174717

RESUMO

Management of advanced melanoma remains challenging, with most BRAF (B-Raf proto-oncogene, serine/threonine kinase)-mutated metastatic patients relapsing within a few months upon MAPK inhibitors treatment. Modulation of tumor-derived extracellular vesicle (EVs) cargo with enrichment of antitumoral molecules is a promising strategy to impair tumor progression and increase treatment response. Herein, we report that restored expression of miR-195-5p, down-regulated in melanoma favoring drug resistance, increases the release of EVs enriched in the tumor suppressor miRNAs, miR-195-5p, miR-152-3p, and miR-202-3p. Incorporating these EVs by bystander tumor cells resulted in decreased proliferation and viability, accompanied by a reduction in CCND1 and YAP1 mRNA levels. Upon treatment with MAPK inhibitors, miR-195 EVs significantly decreased BCL2-L1 protein levels and increased cell death ratio and treatment efficacy. Additionally, EVs exogenously loaded with miR-195-5p by electroporation reduced tumor volume in vivo and impaired engraftment and growth of xenografts implanted with melanoma cells exposed to MAPK inhibitors. Our study shows that miR-195-5p antitumoral activity can be spread to bystander cells through EVs, improving melanoma response to targeted therapy and revealing a promising EV-based strategy to increase clinical response in patients harboring BRAF mutations.


Assuntos
Vesículas Extracelulares , Melanoma , MicroRNAs , Humanos , Proteínas Proto-Oncogênicas B-raf , Recidiva Local de Neoplasia/metabolismo , Melanoma/tratamento farmacológico , Melanoma/genética , Melanoma/patologia , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Vesículas Extracelulares/metabolismo
11.
Chem Biodivers ; 20(6): e202300301, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37097072

RESUMO

Two new indole diketopiperazine alkaloids (IDAs), (+)19-epi-sclerotiamide (1) and (-)19-epi-sclerotiamide (2), along with 13 known analogs (3-15), were isolated from a soft coral-associated epiphytic fungus Aspergillus versicolor CGF 9-1-2. The structures of two new compounds were established based on the combination of HR-ESI-MS, 1D and 2D NMR spectroscopy, optical rotation measurements and quantum chemical 13 C-NMR, the absolute configurations were determined by experimental and electronic circular dichroism (ECD) calculations. The results of molecular docking showed that all the compounds had a good binding with TDP1, TDP2, TOP1, TOP2, Ache, NLRP3, EGFR, EGFR L858R, EGFR T790M and EGFR T790/L858. Biological evaluation of compounds 3, 6, 8, 11 showed that 3 exerted a strong inhibitory effect on TDP2 with a rate of 81.72 %.


Assuntos
Agaricales , Antozoários , Neoplasias Pulmonares , Animais , Dicetopiperazinas/farmacologia , Dicetopiperazinas/química , Simulação de Acoplamento Molecular , Receptores ErbB/metabolismo , Mutação , Inibidores de Proteínas Quinases/metabolismo , Aspergillus/química , Alcaloides Indólicos/química , Antozoários/metabolismo , Estrutura Molecular
12.
Drug Metab Pharmacokinet ; 49: 100483, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36724604

RESUMO

Breast cancer resistance protein (BCRP) is expressed on hepatic bile canalicular membranes; however, its impact on substrate drug disposition is limited. This study proposes an in vivo knockdown approach using adeno-associated virus encoding short hairpin RNA (shRNA) targeting the bcrp gene (AAV-shBcrp) to clarify the substrate, the overall disposition of which is largely governed by hepatic Bcrp. The disposition of the tyrosine kinase inhibitor, regorafenib, was first examined in bcrp gene knockout (Bcrp-/-) and wild-type (WT) mice, as it was sequentially converted to active metabolites M - 2 and M - 5, which are BCRP substrates. After oral administration of regorafenib, plasma and liver concentrations of M - 5, but not regorafenib, were higher in Bcrp-/- than WT mice. To directly examine the role of hepatic Bcrp in M - 5 disposition, M - 5 was intravenously injected into mice three weeks after the intravenous injection of AAV-shBcrp, when mRNA of Bcrp in the liver (but not the small intestine) was downregulated. AAV-shBcrp-treated mice showed higher M - 5 concentration in plasma and liver, but lower biliary excretion than the control mice, indicating the fundamental role of hepatic Bcrp in M - 5 disposition. This is the first application of AAV-knockdown strategy to clarify the pharmacokinetic role of xenobiotic efflux transporters in the liver.


Assuntos
Dependovirus , Camundongos , Animais , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Dependovirus/genética , Dependovirus/metabolismo , Transportadores de Cassetes de Ligação de ATP/genética , Proteínas de Neoplasias/metabolismo , Fígado/metabolismo , Inibidores de Proteínas Quinases/metabolismo , RNA Interferente Pequeno/metabolismo , Camundongos Knockout
13.
J Enzyme Inhib Med Chem ; 38(1): 2152810, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36629075

RESUMO

New quinoline-pyridine hybrids were designed and synthesised as PIM-1/2 kinase inhibitors. Compounds 5b, 5c, 6e, 13a, 13c, and 14a showed in-vitro low cytotoxicity against normal human lung fibroblast Wi-38 cell line and potent in-vitro anticancer activity against myeloid leukaemia (NFS-60), liver (HepG-2), prostate (PC-3), and colon (Caco-2) cancer cell lines. In addition, 6e, 13a, and 13c significantly induced apoptosis with percentage more than 66%. Moreover, 6e, 13a, and 13c significantly induced caspase 3/7 activation in HepG-2 cell line. Furthermore, 5c, 6e, and 14a showed potent in-vitro PIM-1 kinase inhibitory activity. While, 5b showed potent in-vitro PIM-2 kinase inhibitory activity. Kinetic studies using Lineweaver-Burk double-reciprocal plot indicated that 5b, 5c, 6e, and 14a behaved as competitive inhibitors while 13a behaved as both competitive and non-competitive inhibitor of PIM-1 kinase enzyme. Molecular docking studies indicated that, in-silico affinity came in coherence with the observed in-vitro inhibitory activities against PIM-1/2 kinases.


Assuntos
Antineoplásicos , Quinolinas , Masculino , Humanos , Antineoplásicos/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/farmacologia , Caspase 3/metabolismo , Simulação de Acoplamento Molecular , Linhagem Celular Tumoral , Cinética , Células CACO-2 , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/metabolismo , Piridinas/farmacologia , Apoptose , Quinolinas/farmacologia , Proliferação de Células , Ensaios de Seleção de Medicamentos Antitumorais
14.
J Enzyme Inhib Med Chem ; 38(1): 176-191, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36317648

RESUMO

Herein, a set of pyridine and pyrimidine derivatives were assessed for their impact on the cell cycle and apoptosis. Human breast cancer (MCF7), hepatocellular carcinoma (HEPG2), larynx cancer (HEP2), lung cancer (H460), colon cancers (HCT116 and Caco2), and hypopharyngeal cancer (FADU), and normal Vero cell lines were used. Compounds 8 and 14 displayed outstanding effects on the investigated cell lines and were further tested for their antioxidant activity in MCF7, H460, FADU, HEP2, HEPG2, HCT116, Caco2, and Vero cells by measuring superoxide dismutase (SOD), malondialdehyde content (MDA), reduced glutathione (GSH), and nitric oxide (NO) content. Besides, Annexin V-FITC apoptosis detection and cell cycle DNA index using the HEPG-2 cell line were established on both compounds as well. Furthermore, compounds 8 and 14 were assessed for their EGFR kinase (Wild and T790M) inhibitory activities, revealing eligible potential. Additionally, molecular docking, ADME, and SAR studies were carried out for the investigated candidates.


Assuntos
Antineoplásicos , Neoplasias Pulmonares , Animais , Chlorocebus aethiops , Humanos , Receptores ErbB/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Simulação de Acoplamento Molecular , Ensaios de Seleção de Medicamentos Antitumorais , Células Vero , Células CACO-2 , Neoplasias Pulmonares/patologia , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células , Relação Estrutura-Atividade , Mutação , Pirimidinas/farmacologia , Piridinas/farmacologia , Estrutura Molecular
15.
Transl Vis Sci Technol ; 11(12): 8, 2022 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-36484641

RESUMO

Purpose: The administration of anti-vascular endothelial growth factor agents is the standard firs-line therapy for ocular vascular diseases, but some patients still have poor outcomes and drug resistance. This study investigated the role of DCZ19903, a small molecule multitarget kinase inhibitor, in ocular angiogenesis. Methods: The toxicity of DCZ19903 was evaluated by 3-(4, 5-dimethylthiazol-2-yl)-2, 5-diphenyltetrazolium bromide assays, flow cytometry, Calcein-AM/PI staining, and terminal uridine nick-end labeling staining. Oxygen-induced retinopathy and laser-induced choroidal neovascularization models were adopted to assess the antiangiogenic effects of DCZ19903 by Isolectin B4 (GS-IB4) and hematoxylin-eosin staining. EdU assays, transwell migration assays, tube formation, and choroid sprouting assays were performed to determine the antiangiogenic effects of DCZ19903. The antiangiogenic mechanism of DCZ19903 was determined using network pharmacology approach and western blots. Results: There was no obvious cytotoxicity or tissue toxicity after DCZ19903 treatment. DCZ19903 exerted the antiangiogenic effects in OIR model and choroidal neovascularization model. DCZ19903 inhibited the proliferation, tube formation, migration ability of endothelial cells, and choroidal explant sprouting. DCZ19903 plus ranibizumab achieved greater antiangiogenetic effects than DCZ19903 or ranibizumab alone. DCZ19903 exerted its antiangiogenic effects via affecting the activation of ERK1/2 and p38 signaling. Conclusions: DCZ19903 is a promising drug for antiangiogenic treatment in ocular vascular diseases. Translational Relevance: These findings suggest that DCZ19903 possesses great antiangiogenic potential for treating ocular vascular diseases.


Assuntos
Neovascularização de Coroide , Neovascularização Retiniana , Doenças Vasculares , Camundongos , Animais , Humanos , Neovascularização Retiniana/tratamento farmacológico , Neovascularização Retiniana/metabolismo , Neovascularização Retiniana/patologia , Células Endoteliais/metabolismo , Células Endoteliais/patologia , Movimento Celular , Camundongos Endogâmicos C57BL , Proliferação de Células , Modelos Animais de Doenças , Neovascularização de Coroide/tratamento farmacológico , Neovascularização de Coroide/metabolismo , Neovascularização de Coroide/patologia , Inibidores da Angiogênese/farmacologia , Inibidores da Angiogênese/uso terapêutico , Inibidores da Angiogênese/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/metabolismo , Doenças Vasculares/tratamento farmacológico , Doenças Vasculares/metabolismo
16.
BMC Cancer ; 22(1): 1069, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36243702

RESUMO

BACKGROUND: The protein kinases CK2 and PIM-1 are involved in cell proliferation and survival, the cell cycle, and drug resistance, and they are found overexpressed in virtually all types of human cancer, including breast cancer. In this study, we investigated the antitumor activity of a deoxynucleoside derivative, the protein kinase inhibitor compound 1-(ß-D-2'-deoxyribofuranosyl)-4,5,6,7-tetrabromo-1H-benzimidazole (K164, also termed TDB), inter alia CK2 and PIM-1, on breast cancer cell lines (MDA-MB-231, MCF-7, and SK-BR-3). METHODS: An evaluation of the cytotoxic and proapoptotic effects, mitochondrial membrane potential (ΔΨm), and cell cycle progression was performed using an MTT assay, flow cytometry, and microscopic analysis. The Western blotting method was used to analyze the level of proteins important for the survival of breast cancer cells and proteins phosphorylated by the CK2 and PIM-1 kinases. RESULTS: The examined compound demonstrated the inhibition of cell viability in all the tested cell lines and apoptotic activity, especially in the MCF-7 and SK-BR-3 cells. Changes in the mitochondrial membrane potential (ΔΨm), cell cycle progression, and the level of the proteins studied were also observed. CONCLUSIONS: The investigated CK2 and PIM-1 kinase inhibitor K164 is a promising compound that can be considered a potential agent in targeted therapy in selected types of breast cancer; therefore, further research is necessary.


Assuntos
Antineoplásicos , Neoplasias da Mama , Antineoplásicos/farmacologia , Apoptose , Benzimidazóis/farmacologia , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Proliferação de Células , Feminino , Humanos , Células MCF-7 , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-pim-1/metabolismo , Proteínas Proto-Oncogênicas c-pim-1/farmacologia
17.
J Pharmacol Exp Ther ; 383(1): 44-55, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36279392

RESUMO

Important challenges in developing drugs that target central nervous system (CNS) tumors include overcoming barriers for CNS delivery and reducing systemic side effects. Alisertib, an aurora A kinase inhibitor, has been examined for treatment of several CNS tumors in preclinical and clinical studies. In this study, we investigated the distribution of alisertib into the CNS, the site of efficacy for brain tumors, and into the bone marrow, the site of dose-limiting toxicity leading to myelosuppression. Mechanisms influencing site-specific distribution, such as active transport mediated by the efflux proteins, p-glycoprotein (P-gp) and breast cancer resistance protein (Bcrp), were examined. Alisertib exposure to the brain in wild-type mice was less than 1% of that in the plasma, and was evenly distributed throughout various brain regions and the spinal cord. Studies using transporter knockout mice and pharmacological inhibition show that alisertib CNS distribution is influenced by P-gp, but not Bcrp. Conversely, upon systemic administration, alisertib distribution to the bone marrow occurred rapidly, was not significantly limited by efflux transporters, and reached higher concentrations than in the CNS. This study demonstrates that, given an equivalent distributional driving force exposure in plasma, the exposure of alisertib in the brain is significantly less than that in the bone marrow, suggesting that targeted delivery may be necessary to guarantee therapeutic efficacy with minimal risk for adverse events.Therefore, these data suggest that, to improve the therapeutic index when using alisertib for brain tumors, a localized regional delivery, such as convection-enhanced delivery, may be warranted. SIGNIFICANCE STATEMENT: The CNS penetration of alisertib is limited with uniform distribution in various regions of the brain, and P-gp efflux is an important mechanism limiting that CNS distribution. Alisertib rapidly distributes into the bone marrow, a site of toxicity, with a greater exposure than in the CNS, a possible site of efficacy. These results suggest a need to design localized delivery strategies to improve the CNS exposure of alisertib and limit systemic toxicities in the treatment of brain tumors.


Assuntos
Aurora Quinase A , Neoplasias Encefálicas , Animais , Camundongos , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Aurora Quinase A/metabolismo , Aurora Quinase A/uso terapêutico , Medula Óssea/metabolismo , Proteínas de Neoplasias/metabolismo , Azepinas/farmacocinética , Sistema Nervoso Central/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Camundongos Knockout
18.
Chem Res Toxicol ; 35(9): 1467-1481, 2022 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-36048877

RESUMO

Masitinib is a small molecule tyrosine kinase inhibitor under investigation for the treatment of amyotrophic lateral sclerosis, mastocytosis, and COVID-19. Hepatotoxicity has been reported in some patients while taking masitinib. The liver injury is thought to involve hepatic metabolism of masitinib by cytochrome P450 (P450) enzymes to form chemically reactive, potentially toxic metabolites. The goal of the current investigation was to determine the P450 enzymes involved in the metabolic activation of masitinib in vitro. In initial studies, masitinib (30 µM) was incubated with pooled human liver microsomes in the presence of NADPH and potassium cyanide to trap reactive iminium ion metabolites as cyano adducts. Masitinib metabolites and cyano adducts were analyzed using reversed-phase liquid chromatography-tandem mass spectrometry. The primary active metabolite, N-desmethyl masitinib (M485), and several oxygenated metabolites were detected along with four reactive metabolite cyano adducts (MCN510, MCN524, MCN526, and MCN538). To determine which P450 enzymes were involved in metabolite formation, reaction phenotyping experiments were conducted by incubation of masitinib (2 µM) with a panel of recombinant human P450 enzymes and by incubation of masitinib with human liver microsomes in the presence of P450-selective chemical inhibitors. In addition, enzyme kinetic assays were conducted to determine the relative kinetic parameters (apparent Km and Vmax) of masitinib metabolism and cyano adduct formation. Integrated analysis of the results from these experiments indicates that masitinib metabolic activation is catalyzed primarily by P450 3A4 and 2C8, with minor contributions from P450 3A5 and 2D6. These findings provide further insight into the pathways involved in the generation of reactive, potentially toxic metabolites of masitinib. Future studies are needed to evaluate the impact of masitinib metabolism on the toxicity of the drug in vivo.


Assuntos
COVID-19 , Ativação Metabólica , Benzamidas , Catálise , Sistema Enzimático do Citocromo P-450/metabolismo , Humanos , Microssomos Hepáticos/metabolismo , NADP/metabolismo , Piperidinas , Cianeto de Potássio , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Piridinas , Tiazóis
19.
J Pharmacol Exp Ther ; 383(1): 91-102, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36137710

RESUMO

Effective drug delivery to the brain is critical for the treatment of glioblastoma (GBM), an aggressive and invasive primary brain tumor that has a dismal prognosis. Radiation therapy, the mainstay of brain tumor treatment, works by inducing DNA damage. Therefore, inhibiting DNA damage response (DDR) pathways can sensitize tumor cells to radiation and enhance cytotoxicity. AZD1390 is an inhibitor of ataxia-telangiectasia mutated kinase, a critical regulator of DDR. Our in vivo studies in the mouse indicate that delivery of AZD1390 to the central nervous system (CNS) is restricted due to active efflux by P-glycoprotein (P-gp). The free fraction of AZD1390 in brain and spinal cord were found to be low, thereby reducing the partitioning of free drug to these organs. Coadministration of an efflux inhibitor significantly increased CNS exposure of AZD1390. No differences were observed in distribution of AZD1390 within different anatomic regions of CNS, and the functional activity of P-gp and breast cancer resistance protein also remained the same across brain regions. In an intracranial GBM patient-derived xenograft model, AZD1390 accumulation was higher in the tumor core and rim compared with surrounding brain. Despite this heterogenous delivery within tumor-bearing brain, AZD1390 concentrations in normal brain, tumor rim, and tumor core were above in vitro effective radiosensitizing concentrations. These results indicate that despite being a substrate of efflux in the mouse brain, sufficient AZD1390 exposure is anticipated even in regions of normal brain. SIGNIFICANCE STATEMENT: Given the invasive nature of glioblastoma (GBM), tumor cells are often protected by an intact blood-brain barrier, requiring the development of brain-penetrant molecules for effective treatment. We show that efflux mediated by P-glycoprotein (P-gp) limits central nervous system (CNS) distribution of AZD1390 and that there are no distributional differences within anatomical regions of CNS. Despite efflux by P-gp, concentrations effective for potent radiosensitization are achieved in GBM tumor-bearing mouse brains, indicating that AZD1390 is an attractive molecule for clinical development of brain tumors.


Assuntos
Antineoplásicos , Ataxia Telangiectasia , Neoplasias Encefálicas , Glioblastoma , Subfamília B de Transportador de Cassetes de Ligação de ATP/metabolismo , Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Membro 2 da Subfamília G de Transportadores de Cassetes de Ligação de ATP/metabolismo , Animais , Antineoplásicos/farmacologia , Ataxia Telangiectasia/tratamento farmacológico , Ataxia Telangiectasia/metabolismo , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Neoplasias Encefálicas/metabolismo , Glioblastoma/tratamento farmacológico , Glioblastoma/metabolismo , Humanos , Camundongos , Proteínas de Neoplasias/metabolismo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
20.
Drug Des Devel Ther ; 16: 2325-2339, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35899233

RESUMO

Objective: Metastasis causes approximately 90% of cancer-related deaths, including in cervical cancer patients. Uncontrolled cell proliferation, migration, and cancer stemness act as critical events in primary tumor growth and cancer metastasis progression in cervical cancer. Here, we investigated the anti-proliferative, anti-migration, and cancer stemness inhibition activity of N-phenyl pyrazoline derivatives against cervical cancer cells. Methods: The chalcone and phenylhydrazine were used to synthesize the N-phenyl pyrazoline 2/5 (P2 and P5). The MTT, colony formation, and wound healing assays were performed to evaluate the N-phenyl pyrazoline effect in HeLa cells. The N-phenyl pyrazoline's protein target was predicted using SwissTargetPrediction and AutoDock Vina software. The Western blotting assay was performed to evaluate the target proteins. The public dataset analysis was used to confirm the clinical relevance of target protein in cervical cancer patients. Results: N-phenyl pyrazoline 2 and 5 were successfully synthesized. The N-phenyl pyrazolines 2 and 5 exhibit cytotoxic effect in HeLa cell line with 20.26 µM, 4.708 µM of IC50, respectively. Further study shows that the N-phenyl pyrazoline 5 suppresses the cell proliferation and migration ability of HeLa cell line in a dose-dependent manner. Target prediction and molecular docking reveal that EGFR and ERBB2 protein as the main target of the N-phenyl pyrazoline 5 compound. The N-phenyl pyrazoline 5 suppresses the EGFR expression level but not the total ERK1/2. Public data and GSEA analysis found that the EGFR high expression level is positively associated with poor survival, cancer metastasis-related signaling pathways, and cancer stem cell markers in cervical cancer patients. In addition, the N-phenyl pyrazoline 5 reduces the HeLa's tumorsphere size and cancer stem cell marker, CD133. Conclusion: N-phenyl pyrazoline 5 suppresses the cell viability, proliferation, migration, and cancer stem cell-like phenotype of cervical cancer cells via EGFR inhibition.


Assuntos
Neoplasias do Colo do Útero , Linhagem Celular Tumoral , Proliferação de Células , Receptores ErbB , Feminino , Células HeLa , Humanos , Simulação de Acoplamento Molecular , Células-Tronco Neoplásicas , Fenótipo , Inibidores de Proteínas Quinases/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Neoplasias do Colo do Útero/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA